

Journal of Chromatography A, 891 (2000) 45-67

JOURNAL OF CHROMATOGRAPHY A

www.elsevier.com/locate/chroma

Review

Analysis of agrochemicals by capillary electrophoresis

F. Menzinger, Ph. Schmitt-Kopplin*, D. Freitag, A. Kettrup

GSF – National Research Center for Environment and Health, Institute for Ecological Chemistry, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany

Received 24 January 2000; received in revised form 11 May 2000; accepted 12 May 2000

Abstract

An increasing amount of articles using capillary electrophoresis as an investigation tool for pesticides and environmental pollutants were found over the last few years in analytical chemistry oriented journals. This review covers a wide literature range of the 1990s and concentrates on the analysis of organic agrochemicals (herbicides, fungicides, insecticides, acaricides, etc.) with capillary electrophoresis (capillary zone electrophoresis, micellar electrokinetic chromatography with CE–UV– visible or laser-induced fluorescence detection) as well as with the on-coming hyphenated techniques like capillary electrophoresis–electrospray ionization mass spectrometry. The principal preconcentration methods that allowed real sample analysis with CE are also briefly discussed. The pesticides, the separation methods, the used electrolytes, the detection types, the detection limits and the preconcentration methods were classified and presented in tabulated form as a rapid information tool. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Reviews; Environmental analysis; Water analysis; Soil; Food analysis; Pesticides

Contents

1.	Introduction	46
2.	Tabulated list of agrochemical and capillary electrophoresis separation methods	46
3.	Type of analyzed samples	47
	3.1. Commercial formulations	47
	3.2. Environmental real samples	47
4.	Extraction and concentration procedures	51
	4.1. Solid-phase extraction	57
	4.2. Liquid–liquid extraction	57
	4.3. Supercritical fluid extraction	57
	4.4. Pressurized liquid extraction	57
	4.5. On-line sample stacking, field-amplified injection and concentration	62
5.	Capillary electrophoresis separation methods used for the analysis of agrochemicals	62
6.	Detection modes	62

^{*}Corresponding author. GSF – National Research Center for Environment and Health, Institute of Ecological Chemistry (IÖC), Schulstrasse 10, D-85356 Freising-Attaching, Germany. Tel.: +49-8161-987-720; fax: +49-8161-816-12. *E-mail address:* schmitt-kopplin@gsf.de (Ph. Schmitt-Kopplin).

	6.1. UV-visible and laser-induced fluorescence detection	62
	6.2. Electrospray mass spectrometry detection	62
7.	Quantitative analysis	63
8.	Outlook – advanced techniques in the analysis of pesticides	63
	8.1. On-line preconcentration methods	64
	8.1.1. On-line solid-phase extraction	64
	8.1.2. Sample sweeping in electrokinetic chromatography	64
	8.1.3. Membrane-based sample preparation	64
	8.2. Non-aqueous capillary electrophoresis	64
9.	Conclusions	65
Re	ferences	65

1. Introduction

Capillary electrophoresis (CE) has been increasingly used in the last decade, in the medical [1,2] and the biochemical sectors [3,4]. Recent reviews show the increasing need of method development in CE and capillary electrochromatography (CEC) in the analysis of DNA, proteins and peptides, clinical and forensic samples [5]. Capillary gel electrophoresis (CGE), capillary isotachophoresis (cITP) and capillary isoelectric focusing (cIEF) are widely used for the separation of biomolecules such as proteins, DNA, polysaccharides [6] and found only very specific environmental applications [7–10].

Separations with capillary zone electrophoresis (CZE) [11,12] and micellar electrokinetic chromatography (MEKC) [13] cover a wide range of analytes of various polarity, from ionized (anionic or cationic) to neutral components. The selectivity and resolution of the separations are directly controlled by different buffer additives (solvents, complexing agents, polymers) [14,15]. More complex buffer compositions involving different chiral selectors like cyclodextrins, polysaccharides, proteins or macrocyclic antibiotics, allow additionally the separation of isomeric compounds [16,17]. From previous reviews, CZE and MEKC have up to now found the best response in the analysis of environmental samples in contents of pesticides, inorganic [9] and organic pollutants [18-23] in environmental matrices. CE complements and for some separations even replaces classical chromatographic techniques [gas chromatography (GC) or high-performance liquid chromatography (HPLC)] by combining automatization with high separation efficiency for low sample amounts (miniaturization). The running costs

in CE (low amount of running buffer, aqueous electrolyte and fused-silica capillary) are very low as compared with chromatographic packing materials with which high amounts of organic solvents have to be used [18]. Furthermore, a rapid conditioning of the separation system allows a high flexibility of the analysis methods within the same day. All these together make CE a rather "ecological" separation technique worth being developed for many specific routine applications.

Within this manuscript our interest concentrated on the published articles on the analysis of organic agrochemicals by CE (CE-UV-visible, CE-laserinduced fluorescence and CE-mass spectrometry) from the mid-1990s to now; some reviews already focused on environmental applications of CE and CEC [18-23]. The collected information is presented in tabulated form. We particularly focused on the information concerning the nature of the probes (real samples from water, food, soils or stock solutions), the preconcentration techniques like solid-phase extraction (SPE), supercritical fluid extraction (SFE) or field-amplified injection (FAI) and the separation conditions (buffer systems, appropriate wavelengths, type of detection. Not only the "traditional" UVvisible and LIF devices, but also selective mass spectroscopic detection were shown to be promising in environmental application of CE.

2. Tabulated list of agrochemical and capillary electrophoresis separation methods

Agrochemicals cover different chemical classes of organic components from ionizable to neutral substances. The annual worldwide use of agrochemical

Fig. 1. Pesticides production in Germany from 1991 to 1996 [source: Ministerium für Ernährung, Landwirtschaft und Forsten, Germany, 1998].

is in the million tons per year and in Germany alone is higher than $3 \cdot 10^7$ kg; the herbicides class is the most important, followed by fungicides and insecticides (Fig. 1).

The structures of the analyzed agrochemicals with their typical representatives are shown in Fig. 2 for a rapid compound identification.

Tables 1 and 2 summarize the found references (over 60 records in the last few years) in terms of pesticide classes, separation methods, electrolytes, detection methods, matrices and extraction methods as well as the detection limits (as far as this information was available in the cited articles). We distinguished the articles where separation techniques were developed for the different agrochemical classes with standard solutions (Table 1) from the articles where real samples were analyzed (Table 2).

3. Type of analyzed samples

3.1. Commercial formulations

CE finds more and more applications in quality control in the analysis of pharmaceuticals, excipients, preservatives or products in biochemical synthesis [90–92]. In the agrochemical sector CE could be successfully used for the analysis of the active

molecules (racemate contents) in commercial formulations prior to their field application:

(i) Gallant containing 125 g/l racemic haloxyfop ethoxyethyl ester [83], (ii) Effix [flamprop isopropyl pure R-(-)-isomer] [84], blasticidin-S [86], (iii) Foxtril (400 g/l racemic dichlorprop, 187.5 g/l bifenox, 75.5 g/l ioxynil) [68].

3.2. Environmental real samples

The identification and quantification of pesticides and their metabolites in real matrices was investigated in ground- and surface water, in soils as well as in various food samples.

It is especially important to analyze the effects of the matrices on the recoveries (during sample concentration) and responses (during quantification) of the pesticides by CE prior to the analysis of the real samples. For this reason, the different environmental samples were usually analyzed after spiking them with the pesticides of interest.

The different analyzed real matrices from Tables 1 and 2 are listed below:

(1) Water: deionized/distilled water [60,69,72, 76,81], pond water [57,67], tap water [58,62,70,88], ground water [81], river water [81], lake water [45,48], drinking water [89,92].

Fig. 2. Structures of the analyzed pesticides listed in Tables 1 and 2.

(b) CH₃

					N1	K ₂	K 3	K 4	ĸ	ĸ
Organo- Di Di	fenamifos	0	NHCH(CH ₃) ₂	OCH ₂ CH ₃	Н	CH_3	SCH ₃	Н	H	-
phosphorus	a isofenfos	S	NHCH(CH ₃) ₂	OCH ₂ CH ₃	Н	Н	Н	Н	(a)	-
	^{-P'} Y ruelene	0	OCH_3	NHCH ₃	Cl	Н	(b)	Н	Н	-
R2 R1	chlorfenviphos	0	OC_2H_5	OC_2H_5	Cl	Н	Cl	Н	Н	(c)
	parathion	S	OC_2H_5	${\rm OC}_2{\rm H}_5$	Н	Н	NO_2	Н	Н	Н
dialifos C ₂ H ₅ O \ C ₂ H ₅ O \ C ₁ H ₅ O			malathion	сн ₃ 0 , ⁸ сн ₃ 0 , Р–5	СН- СН ₂	-cooc -cooc	₂ H ₅ C ₂ H ₅			
chlorpyrifos	× Ca		diazinon	OMe S OMe O		Н ₃ Н(СН ₃) ₂				
azinphos H ₃ C-Q H methyl O ^{-P-S-V} C-N CH ₃ S H										

(b) $C(CH_3)_2$ (c) C=CCl

Pesticide classes	Structure Formula	Name	R ₁	R ₂	Х	Y	Z	N-Y-Z
Organonitrogen	R_N_X_N	metribuzin hexazinone	NH ₂	-	SCH ₃ =O	N N(CH ₃) ₂	C(CH ₃) ₃ N-CH ₃	N-Y=Z N=Y-Z
organomit ogen	o z-Y	hexazinone	substituded	-	=O	N(CH ₃) ₂	N-CH ₃	N-CH ₃
		derivatives	cyclohexane -ring					
	0 R2 ^{-C} ,x-Y R1	DEET	CHCH ₃		N	CHCH ₃	-	-
		triadimefon		C(CH ₃) ₃	0		-	-
		bromacil	CH CH CH ₃		Br	CH ₃		
	ö	terbacil	C(CH ₃) ₃		Cl	CH ₃		

Pesticide	Structure Formula	Name	R ₁	\mathbf{R}_2	R ₃	R4	R5	R1`	R2`	R3`	R4`	R5`	Х
classes													
Organo-	R2, R1 R1, R2	p,p`-DDT	Н	Н	Cl	Н	Η	Н	Н	Cl	Н	Н	CCl ₃
chlorine		o,p`-DDT	Н	Н	Н	Н	Cl	Н	Н	Cl	Н	Н	CCl ₃
		p,p`-DDD	Η	Н	Cl	Η	Н	Н	Н	Cl	Н	Н	CHCl ₂
		o,p`-DDD	Н	Н	Н	Н	Cl	Η	Η	Cl	Н	Н	CHCl ₂
	K4 K3 K ₅ K ₄	p,p`-DDE	Н	Н	Cl	Η	Н	Н	Н	C1	Η	Н	CCl ₂
		o,p`-DDE	Cl	Н	Н	Н	Η	Н	Н	Cl	Н	Н	CCl_2

Fig. 2. (continued).

Pesticide classes	Structure Formula	Name
Nitrobenzene	N(CH.CH.CH.)	trifluralin
amine	0,N NO,	
	CF ₃	
Nitrophenol	он сн ₃	dinoseb
	O ₂ N CH ₂ CH ₃	
	· · · · · · · · · · · · · · · · · · ·	
	NO,	
Benzothiadiazin	Ŧ	bentazon
	A Lo	
	CH ₃	
		imazaquin
		mineriyum
	К ССН3	
	H CH3	
	н.с. 🗙 соон	
		• • • • • •
	С С С Н,	imazamethabenz (m-isomer)
	H VCH3	
	GH	nanronamida
	CH ₃	napropanitue
	OCHCON(C2H3)2	
	\sim	
		ethofumesate
	CH,SO,O	
	СН,	
	№ ¹ 0 ⁻¹ 0С ₂ н ₅	
	Соон	
		imazapyr

Pesticide classes	Structure Formula	Name	R ₁	R ₂	R ₃
		atrazine	Cl	CH(CH ₃) ₂	CH ₂ CH ₃
s-Triazines	R1	simazine	Cl	CH ₂ CH ₃	CH_2CH_3
	<u>、</u> 人、	propazine	Cl	$CH(CH_3)_2$	$CH(CH_3)_2$
		terbutylazine	Cl	C(CH ₃) ₃	CH ₂ CH ₃
		cyanazine	Cl	CH_2CH_3	C(CH ₃) ₂ CN
		terbutryn	SCH_3	$CH(CH_3)_2$	CH ₂ CH ₃
		desmetryn	SCH_3	CH(CH ₃) ₂	CH_3
		simetryn	SCH_3	CH ₂ CH ₃	CH ₂ CH ₃
		prometryn	SCH_3	$CH(CH_3)_2$	$CH(CH_3)_2$
		ametryn	SCH_3	CH(CH ₃) ₂	CH ₂ CH ₃
		atraton	OCH_3	$CH(CH_3)_2$	CH_2CH_3
		prometon	OCH_3	$CH(CH_3)_2$	$CH(CH_3)_2$
		hydroxymetabolites of	OH		**
		triazines above			
		dealkylated metabolites of triazines above		55	Н

Fig. 2. (continued).

Pesticide classes	Structure Formula	Name	Х	Y	R ₁	\mathbf{R}_2	R_3
Sulfonvlurea		bensulfuron methyl	С	Н	OCH ₃	OCH ₃	соосн,
Sunonynarea	ы						С н,
		sulfometuron methyl	С	Н	CH ₃	CH_3	COOCH ³
		nicosulfuron	С	Н	OCH ₃	OCH ₃	
							CON(CH)
		chlorimuron ethyl	С	Н	OCH ₃	Cl	COOC ₂ H ₅
		thifensulfuron methyl	Ν	Н	OCH_3	CH_3	5 COOCU
		metsulfuron methyl	N	Н	CH_3	CH_3	соосн,
							U.
		tribenuron methyl	Ν	CH_3	CH_3	OCH ₃	соосн,
							\checkmark
		ethametsulfuron- methyl	N	н	OCH ₂ CH ₃	NHCH ₃	COOCH3
		trigsulfuron	N	н	OCH,	CH	
		ti fasultui oli			00113	eng	
		primisulfuron-methyl	С	Н	OCF₂H	OCF₂H	× 、
		chlorsulfuron	Ν	Н	OCH ₃	CH_3	<i>a a a b a b b b b b b b b b b</i>
		amidosulfuron	С	Н	OCH_3	OCH_3	N(CH ₃)SO ₂ CH ₃
			N	ц	OCH.	осн.	
		rinsuluion	1	11	0013	oen,	SO ₂ CH ₂ CH ₃
							'N'
		CGA 152`005	N	Н	CH_3	OCH ₃	CH ₂ CH ₂ CF ₃
							\checkmark

Fig. 2. (continued).

(2) Soils: agriculture soils [28,61,68,72,83,93], sea sand [75].

(3) Food: crops such as sugar cane, rice, corn [73], wheat, barley [64], vegetables such as potatoes [61], fruits such as soybeans [66].

CE is only part of a complete analysis setup in the separation of pesticides from real matrices which includes isolation, purification and preconcentration steps [94]. As with CE the injection volumes are in the nanoliter range the sample preparation (purification and concentration) is an essential step prior to analysis.

4. Extraction and concentration procedures

Mainly five preconcentration methods were found to be used for the components listed in Fig. 2: SPE; LLE (liquid–liquid extraction); sample stacking, FAI

Pesticide classes	Structure Formula	Name	R ₁	R ₂	Х	Y
Carbamates	Ĥ	prophame	-CH(CH ₃) ₂	Ŷ	0	0
	R2 ~ N ~ C ~ X ~ R1 Y	carbofuran		CH ₃	0	0
		propoxur	H _J C CH _J	CH_3	0	о
		methomyl	H H _c C ^C CH ₃ H ₃ C ^C S ^{-CH₃}	CH ₃	0	0
		thiophanate methyl		CH ₂ CH ₃	0	0
		dimethoate	S-J-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S	CH ₃	CH ₂	0
		thiram	-s' ^{C-N} CH ₃	two CH3 on nitrogen	s	s
		aldicarb	M N H ₃ C CH ₃ CH ₃	CH ₃	0	0
		methomyl	-N=C-CH ₃ SCH ₃	CH_3	0	0
		asulam	NH ₂	CH ₃	0	0
		carbaryl		CH ₃	0	0
		swep		CH ₃	0	0
		formetanate	N(CH ₃) ₂ -C=N	CH ₃	0	0
		ethiofencarb		CH ₃	0	0
		cycloate	\bigcirc	CH ₂ CH ₃	S	0
		molinate	(C ₂ H ₅ instead H on nitrogen) CH ₂ CH ₂ CH ₂ CH ₂ CH CH CH CH ₂ CH CH CH CH ₂			
		thiophanate-methyl	$ \substack{H \\ H \\$			

Fig. 2. (continued).

Quaternary Ammonium "Quats"	Н ₃ С	-N [±]	[₃		pa	raquat iquat	
	L C	H ₃ C _{N-N} +CH ₃			difenzoquat		
	с	chlormequat					
		me	piquat				
	н	O(CH ₂) ₂ N+(CH ₃) ₃			cholin	e chloride	
		(CH ₃) ₃ N+H			triethyl	amine-HCl	
	Н	² C=C-N+(CH ₃) ₃			trimethylv hyd	vinylammonium Iroxide	
Pesticide classes	Structure Formula	Name	R ₁	R ₂	R3	R4	
Acetamid	R3 R1	metolachlor	CH ₃	CH ₂ COCH ₃	CH ₃	CH ₂ CH ₃	
	NC-CH ₂ -Cl	alachlor	Н	OCH ₃	CH ₂ CH ₃	CH ₂ CH ₃	
	R4 ()	butachior	н	OC4H9	CH ₂ CH ₃	CH ₂ CH ₃	
Postigido	Structure Formula	Nama		P	P	P3	
classes	Structure Formula			N 1	K ₂	K5	
Pyrethroid		permethrin 1		$\hat{\mathbf{D}}$	н	C=C-CI ₂	
	O R2	cypermethrin		\bigcirc	CIIIN	C=C-Cl ₂	
		fenpropathrin		(C	(H ₃ C) ₂	
		phenothrin		\square	Н	C=C-(CH ₃) ₂	
		sanmarton		$\hat{\mathbf{D}}$	C≣N		
		tetramethrin		les les	Н	(H ₃ C) ₂ -C=CH	
			-	instead of			

Fig. 2. (continued).

Pesticide	Structure Formula	Name
classes		
Triorganotin	(CH ₃) ₃ SnCl	trimethyltin-Cl
	(C ₂ H ₅) ₃ SnCl	triethyltin-Cl
	(C ₃ H ₇) ₃ SnCl	tripropyltin-Cl
	[CH ₃ (CH ₂) ₃] ₃ SnCl	tributyltin-Cl
	(C ₆ H ₅) ₃ SnCl	triphenyltin-Cl

Pesticide classes	Structure Formula	Name	
Phosphonic Acid	$HO-C-CH_2 H - CH_2 H - OH OH$	glyphosphate	
	H ₂ N-CH ₂ -OH OH	aminomethylphosphonic acid (AMPA)	

Fig. 2. (continued).

Table 1							
Pesticide classes	analyzed	with	capillary	electrophoresis	from	standard	solutions ^a

Pesticide class	Pesticides	Method	Electrolytes	Detection methods, detection limit (DL)	Ref.
Phenoxy acid	Dichlorprop, mecoprop, 2,4-CPPA, 2,3-CPPA, 2,2-CPPA, 2-PPA, (silvex)	CZE	250 mM phosphate, pH 6.5 50 mM NG (nonyl-β-ъ-glucopyranoside or 70 mM OG (n-octyl-β-ъ-glucopyranoside)	UV, λ=230 nm	[24]
Pyrethroid	Chrysanthemic acid metabolites		Review on chiral glycosidic surfactants		[25]
s-Triazine	Chloro-, hydroxy-, methoxy-, thiomethyl s-triazine	CZE	50 mM citrate-hydrochloric acid, pH 2.2	UV, λ=230 nm DL: 0.05 mg/l	[26]
Phenoxy acid	2,4-D, MCPA	CZE MEKC CZE	 (a) 10 mM phosphate, 6 mM borate, pH 9.3, 50% acetonitrile (b) 10 mM phosphate, 6 mM borate, pH 9.3, 50 M sodium cholate, 35% acetonitrile (c) 10 mM phosphate, 6 mM borate, pH 9.3, 5 mM α-CD 	UV, λ=200 nm DL: 2,4-D: 0.15 mg/l MCPA: 0.15 mg/l	[27]
Imidazolinone, phenoxy acid	Imazaquin, imazamethabenz, diclofop,	CZE	50 mM acetate, pH 3.6, 10 mM DM-β-CD, 10 mM TM-β-CD	UV, λ=214 nm DL: 10 mg/l	[28]
Phenoxy acid	2,4-D, dichlorprop, mecoprop, fenoprop	CZE	50 mM acetate, pH 4.5; for enantiomers: idem+25 mM TM-β-CD	UV, λ=230 nm DL: 0.05 mg/l	[29]
Organophosphorus Phenoxy acid methylester Organochlorine	Ruelene, isofenphos, dialifos, fenamifos, malathion Fenoprop, mecoprop, dichlorprop-methyl ester p,p'-DDT, p,p' -DDD, o,p' -DDT, o,p' -DDD, p,p'-DDE, o,p' -DDE	MEKC MEKC	 (a) 20 mM borate, pH 9,100 mM SDS, 40 mM DM-β-CD (b) 20 mM borate, pH 9,100 mM SDS, 60 mM γ-CD, 15% methanol 	UV, λ =200 nm	[30]
Acetamide	Metolachlor isomers: aS1'R, aS1'S, aR1R, aR1'S	MEKC MEKC MEKC	 (c) 20 mM borate, pH 9, 50 mM SDS, 20 mM γ-CD, 20% acetonitrile (d) 20 mM borate, pH 9, 100 mM SDS (three of four isomers separated) 5 mM borate, pH 8, 30 mM SDS 		
Carbamate organophosphorus, s-triazine	Prophame, propoxur carbofuran, methyl-, ethyl-parathion, chlorfenvinphos atrazine, simazine, desmetryn			UV-Scanner: λ=200-300 nm DL: 0.08-0.13 mg/1	[31]
Pyrethroid	Permethrin, phenotrin, sanmarton, cypermethrin, fenpropathrin (with and without derivatization with ANDSA)	CZE	50 mM phosphate, pH 7.0	UV (a) λ =200 nm, (b) λ =255 nm LIF λ_{ex} =325, 488 nm DL underivatized: UV 4.5·10 ⁻⁵ M LIF 2.5·10 ⁻⁵ M DL derivatized: UV 3.2·10 ⁻⁵ M LIF 9.3·10 ⁻⁵ M	[32]
s-Triazine	12 hydroxytriazines, ametryn, atraton	MEKC	10 mM phosphate, pH 7.0, 50 mM SDS, (25% isopropanol)	UV, <i>λ</i> =210, 230, 254 nm	[33]
s-Triazine	Ametryn, terbutryn, prometryn, simazine, atrazine, propazine	NACE	10 mM perchloric acid in 50% (v/v) acetonitrile in methanol, 20 mM SDS	UV, λ =214 nm	[34,35]
Sulfonylurea	Bensulfuron methyl, sulfometuron methyl, nicosulfuron, chlorsulfuron, chlorimuron ethyl, thifensulfuron methyl, metsulfuron methyl,	CZE	25 mM acetate, pH 5-acetontrile (3:1)	UV, $\lambda = 214 \text{ nm}$ DL: $4 \cdot 10^{-4} M$	[36]
Phenoxy acid, phenylurea	2,4-D, 2,4-DP, 2,4,5-T, 2,4-DB fenuron, monolinuron, linuron	MEKC	20 mM phosphate, borate pH 7, 0.07 M SDS	UV, λ =205 nm	[37]

Table 1. Continued

Pesticide class	Pesticides	Method	Electrolytes	Detection methods, detection limit (DL)	Ref.
Sulfonylurea	Bensulfuron methyl, sulfometuron methyl, ethametsulfuron-methyl, tribenuron methyl, triasulfuron, chlorimuron ethyl, nicosulfuron, thifensulfuron methyl primisulfuron methyl, metsulfuron methyl, chlorsulfuron, amidosulfuron	CZE	50 mM acetate, pH 4.76, 1.86 mol/l acetonitrile	UV, λ=239, 220 nm	[38]
s-Triazine, phenoxy acid, urea	Prometon propazine, prometryn silvex, 2,4,5-T, 2,4-D; monuron, diuron, chloroxoron, fluometuron, linuron, metobromuron, neburon,	MEKC MEKC	 (a) 200 mM 1-butaneboronic acid, pH 10, 104 mM HG (heptyl-β-D-glucopyranoside) or 28 mM DG (decyl-β-D-glucopyranoside) (b) 200 mM 1-butaneboronic acid buffer, pH 11, 125 mM HG or 28 mM DG 	UV, s-triazine, phenoxy acid: $\lambda = 231 \text{ nm}$ (b) urea: $\lambda = 240 \text{ nm}$	[39]
s-Triazine	Hydroxytriazines	CZE	50 mM acetate, pH 4.65,	UV, λ =214, 230 nm	[7,40]
Phenoxy acid	Silvex-enantiomers; (Troger's base, dansyl amino acids)	MEKC	400 mM borate pH 10, 50 mM deoxy big CHAP[N,N-bis-(3-D-glucon- amidopropyl)-deoxycholamide]	UV, λ =240 nm	[41]
s-Triazine, acetamide, phenoxy acid, sulfurcarbamate, organophosphorus	Prometon, prometryn, propazine butachlor; silvex, 2,4,5-T; aldicarb; diazinon	MEKC MEKC	 (a) 125 mM borate, pH 10, 100 mM MEGA 8 (octanyl-N-methylglucamide) (b) 125 mM borate, pH 10, 50 mM MEGA 10 (decanoyl-N-methylglucamide) 	UV, λ =240 nm	[42]
Quaternary ammonium	Paraquat, diquat, difenzoquat	CZE	10 mM acetate, pH 4, 100 mM sodium chloride	UV, λ =205 nm	[43]
Phenylurea, phenoxy acid	Diuron, fenuron, linuron, mono- linuron, monuron; dichlorprop, 2,4-D, 2,4,5-T, 2,4-DB	MEKC	20 mM phosphate, pH 7, 50 mM SDS, 50 mM n-heptanol or 4.59 M methanol	UV, λ =205 nm	[44]
Phenylurea	Monuron, diuron, fluometuron, siduron, metobromuron, linuron, neburon, chloroxuron	MEKC	(a) 200 m <i>M</i> borate, pH 10, 100 m <i>M</i> OS (OM, OG, MEGA-9)	UV, λ =240 nm	[45]
s-Triazine, phenoxy acid, sulfurcarbamate, organophosphorus	Prometon, propazine, prometryn silvex, 2,4,5-T, 2,4-D; aldicarb; parathion	MEKC	(OM: octyl-β-D-maltopyranoside OS: n-octanoylsucrose OG: octyl-β-D-glucopyranoside MEGA 9: nonanoyl-N-methylglucamide) (b) 200 mM borate, pH 10, 100 mM OG (OM, OS, MEGA-9)		
Triazole	Triadimenol	MEKC	 (a) 200 mM borate/20 mM phosphate, pH 9.1, 0.05 mM SDS, (b) 20 mM hydroxypropyl-β-CD (enantiomers) 20% methanol 	DAD, λ =220 nm	[46]
Phenoxy acid	Dicamba, 2,4,5-T, 2,4-D, silvex, dichlorprop, MCPP, MCPA, 2,4-DB	CZE	19 mM phosphate buffer, pH 2.9, 0.75 mM hexamethoniumhydroxide (reversed-EOF)	UV, λ =230 nm	[47]
Phenoxy acid	MCPA, 2,4-D, MCPB, dicamba, mecoprop, dichlorprop	CZE	75 mM acetate, pH 4	UV, λ =230 nm	[48]
Carbamate phenylurea,	Carbofuran, phenmedipham, diuron, chlortoluron, fenuron, isoproturon, linuron, monuron methabenzthiazuron, metoxuron metobromuron, monolinuron	MEKC	 10 mM disodiumtetraborate, 10 mM boric acid (a) +80 mM SDS (b) +20 mM SDS with each 3 M urea (c) +20 mM SDS without urea 	UV, λ =254 nm	[49]
s-Triazine	Simazine, atrazine, propazine, ametryn, prometryn, terbutryne, simetryn, prometon	CZE	50 mM acetate, pH 3.85, 0.7 mM cetyltrimethylammonium bromide (CTAB) for reversed-EOF	UV, λ =230 nm; ESI-MS	[50]
Phenoxy acid	Dichlorprop, fenoprop, mecoprop	CZE	50 mM acetate, pH 4.6, 20 mM TM- β -cyclodextrin	UV, λ =230 nm ESI-MS	[51]

Table 1. Continued

Pesticide class	Pesticides	Method	Electrolytes	Detection methods, detection limit (DL)	Ref.
s-Triazine	Atrazine, propazine, ametryn, prometryn	MEKC	20 mM acetate, pH 6.8, 25 mM SDS	UV, $\lambda = 226$ nm; ESI-MS	[52]
Phenoxy acid	MCPP, 2,4-DP, 2,4-D, MCPA	CZE	10 mM acetate, pH 4.8	ESI-MS	[53]
Quaternary ammonium	Chlormequatchloride, choline chloride, trimethylamine- hydrochloride, trimethylvinyl-ammoniumchloride	CZE	10 mM creatinine, pH 3.6	Indirect UV, λ=200 nm ESI-MS DL: 5 mg/l	[54]
s-Triazine	Atrazine, desethylatrazine, desisopropylatrazine, simazine	MEKC MEKC	 (a) 10 mM acetate, pH 7, 10 mM SDS (b) 10 mM acetate, pH 5.9, 10 mM SDS 	(a) UV, $\lambda = 226$ nm (b) ESI-MS	[55]
Quaternary ammonium	Paraquat, diquat	CZE	5 mM electrolyte (sodium acetate; ammonium hydrogencarbonate; ammonium acetate; ammonium formate, ammonium citrate), 0.5–1.5% acetic acid, pH 3.9, in methanol–water (50:50, v/v)	UV, λ=210 nm ESI-MS	[56]

^a ANDSA=7-aminoaphthalene-1,3-disulfonic acid; CD=cyclodextrin; CPPA=Chlorphenoxypropionic acid; DB= (dichlorophenoxy)butryic acid; DP=(dichlorophenoxy)propanoic acid; MCPA=(2-methyl-4-chlorophenoxy)acetic acid; MCPP=2-(4-chloro-2-methylphenoxy)propanoic acid; PPA=Phenoxypropionic acid; SDS=sodium dodecyl sulfate; TM=trimethyl; other abbreviations defined in the table or in the text.

or FAC (field amplified concentration); PLE (pressurized liquid extraction); SFE.

tion of solvents are needed (the usually used solvents were methylene chloride [28,50,53,73,83] and hexane [66]).

4.1. Solid-phase extraction

SPE constitutes the most used preconcentration technique prior to CE analysis. The sorbents used for analysis are in the most presented cases non-polar C_{18} materials that retain the analytes by hydrophobic interactions [95]. Coextracted substances from the matrices may interfere in the separation/detection of the analytes [96]. These preconcentrations were usually performed off-line by using SPE microcolumns and only in a few attempts was the on-line-modus with CE tried for the analysis of pesticides [97]. For more detailed information on SPE please refer to Ref. [98], a review which places an emphasis on method development, sorbents and coupling with liquid chromatography in both biological and environmental areas.

4.2. Liquid-liquid extraction

LLE is a classical extraction method with a long history, but with several drawbacks: (i) many cleanup steps must be included (low selectivity); (ii) the recoveries are often insufficient, (iii) high consump-

4.3. Supercritical fluid extraction

SFE uses the physico-chemical properties of supercritical fluids (mainly CO_2 and possible solvent additives) [100] for the extraction of the pesticides {acetone: CO_2 (10:90) (70°C, 100 atm=10.1·10³ kPa) was used in Ref. [73]}. It needed rather a long time in some examples, because intermediate washing and drying steps had to be involved [69].

4.4. Pressurized liquid extraction

PLE is a relative new technique similar to LLE and employs increased temperatures and pressure in order to speed up the extraction [in the found example the extraction solvent was acetonitrile–50 m*M* HCl (pH 2) (7:3), 50°C, 2000 p.s.i.=13.8 \cdot 10³ kPa] [66]. PLE works according to the principle of static extraction with superheated liquids. Originally PLE was developed for the sample preparation in environmental analysis and found application in the extraction of medicinal plants [99].

Pesticide class	Pesticides	Method	Electrolytes	Detection method and limit (DL)	Matrix analyzed, extractions	Ref.	
s-Triazine, acetamide, phenoxy acid	Atrazine, simazine, alachlor, metolachlor dicamba, 2,4-D	MEKC MEKC	 (a) 10 mM phosphate, pH 9.0, 30 mM SDS, 8% methanol (b) 10 mM borate, pH 9.2, (c) M 0D0 at the P 100 for the photon of t	UV: $\lambda = 214$ nm DL UV: triazines: 0.1 µg/l	Pond-water: LLE with methylene chloride	[57]	
Sulfonylurea	Chlorimuronethyl: *after derivatization with BMC (4-bromo-methyl- 7-methoxy- coumarin) *after derivatization with dansylchloride	MEKC	30 mM SDS, 5 mM Brij55 (c) 10 mM phosphate, pH 9.0, 30 mM SDS	alachlor: 1.0 μ g/l LIF: λ_{ex} =325 nm dicamba, 2,4-D, chlorimuronethyl DL LIF: 10 ng/l	Deionized water: SPE with ethyl acetate, ethyl acetate–methylene chloride (1:1, v/v), methylene chloride		<i>F. M</i>
Quaternary ammonium	Paraquat, diquat, difenzoquat, chlormequat (cq), mepiquat (mq)	CZE	10 m <i>M</i> 1-(4-pyridyl)-pyridinium chloride–HCl (PP), pH 2.5, 10% methanol	Indirect UV, λ =205, 257 nm DL: 0.8 µg/l for mq, cq	Tap water	[58]	enzinger
Organonitrogen	Hexazinone and metabolites C, A1, E, B, D; (atrazine as internal standard)	MEKC	12 mM sodium phosphate 10 mM sodium borate pH 9, 50 mM SDS, 15% methanol	DAD, hex., A1: (247 nm), C (230 nm), B, D (225 nm), atrazin E (220 nm)	Groundwater SPE with methylene chloride	[59]	et al. / J.
Phenoxy acid	2,4-D, 2,4-DB, 2,4-DP, 2,4,5-TP, MCPA, MCPB, 2,4,5-T, MCPP, derivatized with 5-(aminoacetoamido)fluorescein	MEKC	39 mM phospate, pH 6.5, 1670 mM urea, 46 mM SDS, 22.2% methanol	LIF, λ_{ex} =488 nm DL 2 fg for 4-nl injection	Distilled water, SPE with methanol	[60]	Chromat
Quaternary ammonium	Paraquat, diquat	CZE	100 mM phosphate, pH 4.0, 10% acetonitrile	DAD, λ=258, 310 nm, DL: 0.25-0.36 nM	Herbicides in water, soil, potatoes, urine serum	[61]	ogr. A
s-Triazine	Atrazine, terbutylazine, desethylatrazine, desisopropylatrazine, desethylterbutylatrazine, hydroxyatrazine (HA), ameline hydroxyterbuthylazine (HT), desethylhydroxyat. (DEHA), desisoprorovlhydroxyat. (DIHA)	CZE,	(a) 100 mM acetate, pH 4.6, 10% methanol for OH- triazines	UV, λ =210 nm DL CZE: DIHA, DEHA, ameline 0.2 mg/l HA. HT 0.5 mg/l	Tap water, river water, s-triazine-contaminated groundwater	[62]	891 (200
		MEKC	(b) 30 m <i>M</i> borate, pH 9.3, 30 m <i>M</i> SDS	DL SPE-CZE: 0.5–1.25 μg/l for 200-ml sample	SPE (LiChrolut EN) with methanol–acetone (3:2, $v \slash v \slash$		0) 45-
Phenoxy acid, phenylurea, s-triazine, carbamate, organophosphorus	2,4-D, 2,4,5-T, diuron, atrazine, simazine, terbutryn dimethoate, azinphos methyl, chlorpyriphos methyl chlorpyriphos ethyl, carbaryl	MEKC	 (a) 20 mM phosphate, pH 7, 50 mM SDS, 20 mM borate 8.8% <i>n</i>-butanol (b) pH 9, 50 mM SDS, 40% methanol 	UV, λ=200, 225 nm	Off-line-SPE (Carbopack B with methylene chloride, methanol, 0.016 M KOH and C ₁₈ with methanol) field amplified injection	[63]	67
Sulfonylurea	Metsulfuron methyl thiofensulfuron-methyl, rimsulfuron, chlorsulfuron, tribenuron methyl	MEKC	25 mM phosphate, pH 6.15, 50 mM SDS	UV, A=234 nm DL: 0.02 mg/l, DL rim., triben.: 0.035 mg/l	 Wheat, barley, com (a) Homogenisation with acetonitrile, extraction with <i>n</i>-hexane (b) Clean-up with cation-exchange-SPE 	[64]	

 Table 2

 Pesticide classes analyzed with capillary electrophoresis from real environmental matrices^a

Organophosphorus	Chlorpynfos	CZE	10 mM phosphate, 6 mM horate.	UV, λ=?	Air, leaves, soil	[65]
		+ HPLC	25% acetonitrile, 50 mM SDS or NADCh (sodiumdeoxycholate)	DL air sample: 1 mg/m ³		
Nitrobencoic acid, Phenoxy acid, Benzothiadiazin, Sulfonylurea	Acithorfen (A), 2,4-D, benazon (B), thifesulforon-methyl (T), chlorinuron-ethyl (C) inazaquin (I),	CZE	50 mM acetate, pH 4.75	UV, Å=240 mm DL: (ng/g) A: 36, B: C: 11,T: 11 2,4-D: 85, 1: 52	Soybeans PLE, clean-up with LLE with <i>n</i> -bexane/SPE with C ₁₈	[66]
Phenoxy acid	2,4-DB, MCPB, 2,4-DP, 2,4-D, MCPA 2,4,5-TP, 2,4.5-T	CZE	 (a) Phosphate, pH 5.6, 2 mM α-CD (b) Phosphate, pH 5.6, 4 mM α-CD/1 mM β-CD 	UV, λ=200 mm DL: <1 μg/1	Lake water SPE with methanol	[67]
Phenoxy acid	Foxtril fomulation: dichlorprop, ioxynil, bifenox	CZE CZE	 (a) 50 mM acetate, pH 4.65 (b) 50 mM acetate, pH 4.65 +25 mM TM-β-CD 	UV, λ=230 nm DL dichlorprop: 0.05 μg/g soil	Foxtril and soil after application of Foxtril extraction with acetonitrile-water-glacial acetic acid (80:20:2); methylene chloride-hydrochloric acid	[68]
Benzimidazole, Methozyacetyl- xylylalaminate, Tiazole, Oxaoldinedione	Cartendazim (c), metalaxyl (m), propiconazole (p), vinelozolin (v)	MEKC	10 mM phosphate, pH 7, 100 mM cholate, 10% methanol	UV, λ=214 mn DL: (m): 10 μg/L (c): 5 μg/l (p): 20 μg/L (v): 5 μg/l	Deionized water lake water LLE (methylene chloride)	[69]
Sulfonylurea, acetamide, s-triazine	Linuron, metsulfuron, metolachlor, atrazine	MEKC MEKC	 (a) 50 mM borate, pH 8, 35 mM SDS, 10% methanol (b) 50 mM borate, pH 8, 22 mM SDS, 10% methanol (metabolites) 	UV, A=214 nm	Tap water, drinking water SPE (methylene chloride)	[70]
Sulfonylurea Sulfonamide	Bensulfuron methyl, sulfmeturon methyl, triasulfuron, chonsulfuron, flumetsulam, nicosulfuron, triffusulfuron methyl, chlorimuron ethyl, Prosulturon, thifensulfuron methyl, primisulfuron methyl, metsulfuron methyl, halosulfuron methyl	CZE +LC-MS	50 mM acetate, pH 4.75, 12% acetonitrile	UV, A=240 nm	Marsh water SPE with methanol Clean-up with strong-ion-exchange SPE on alumina SPE with 0.5% acetic acid in methylene chloride	[71]
Sulfonylurea	Chlorsalfuron, tribenuron, mesulfuronmetnyl, bensulfuron, triasulfuron, chlorimuron, rimsulfuron, ethamesulfuron, CGA 152'005	MEKC	50 mM borate, pH 8.0, 22 mM SDS, 10% methanol		Distilled water	[72]
Phenoxy acid, benzoic acid	2,4-D, dicamba	MEKC	50 mM borate, pH 8.3, 25 mM SDS	UV, λ=254 mm DL: ca. 0.6 pg	Crops (sugar cane, rice, com) treated with 2,4-D and dicamba, SFE with CO ₂ -acetone, clean-up: LLE with diethylether	[73]

F. Menzinger et al. / J. Chromatogr. A 891 (2000) 45-67

59

Pesticide class	Pesticides	Method	Electrolytes	Detection method and limit (DL)	Matrix analyzed, extractions	Ref.
Phosphonic acid	Glyphosphate, aminomethylphosphonic acid (AMPA)	CZE	10 mM phthalate, pH 7.5, 0.5 mM TTAB	Indirect UV, λ=240, 350 nm DL: 0.01 μM (2 ng/nl)	Milled wheat. stacking from water, field amplified injection	[74]
Diorganotin (DT), triorganotin (TT)	Trimethylin (TMT), triethylin (TET), tripropyltin (TPT), tributylin (TBT), triphenyltin (TPhT)	CZE CZE	 (a) 5 mM acetate, pH 4.5, 4 mM 4-aminopyridine (4-AP) (b) 5 mM acetate, pH 4.5, 	Indirect UV, λ=261 mm DL (TT): 2 μM DL (DT): 10-20 μM	Sea-sand standard reference material (SRM) PACS-1 from National Research Council of Canada (NRCC, Ottawa, Canada)	F. Mer
			4 mM 4-aminopyridine (4-AP), 15 mM α -CD			nzinge
Sulfonylurea	Chlorsalfuron, chlorimuron, metsulfuron	MEKC	30 mM borate, pH 7.0, 80 mM SDS, 14% methanol	UV, λ=214 nm DL: 10 ng/1	Soil SPE with methanol-water (1:1, v/v)	er et al.
			20% isopropanol			/ J
Sulfonylurea	Primisulfuron, triasulfuron	CZE	25 mM phosphate, pH 6.5,	UV, $\lambda = 214$ nm	Deionized water, lake water, soil,	1. Ch
			or non unum ucoson sulfate	DL: 0.2 mg/l (primisulfuron) 0.1 mg/l (triasulfuron)	 curacion with methylene chorace (b) extraction with methanol-phosphate (1:1) and methylene chloride 	romatogr. 1
Carbamate organophosub.	Prophame, carbofuran, parathionethyl, chlorfenyinhos	MEKC	5 mM borate, pH 8.0, 30 mM SDS	UV, DAD A=190–365 nm	Drinking water	A 891
x-trazine phenoya acid phenylurea	simzine, desmetyn 2,4-D diuron			DL in ng/ml: 2,4-D 0.08 Popiume 0.08 Arrazine 0.014 Arrazine 0.014 Parathionethyl 0.04	SPE with methanol combined with sample stacking	(2000) 45–67
s-Triazine	Atrazine, cyanazine, simazine, propazine, ametryn, prometryn, terburyn	MEKC	60 mM borate, pH 9.2, 50 mM SDS	UV, A=214 nm DL: 0.05 µg/m1 DL (SPE) 0.2 ng/m1	Water, SPE with methanol	67]
Triorganotin	Trimethyltin (TBT), triethyltin (TET), tributyltin (TBT), tripropyltin (TPT)	CZE	20 mM tartaric acid, 20% methanol, 4 mM CTAB, pH 2.6	UV, A=220 mm DL: TMT: 0.16 mg/l TET: 0.24 mg/l TRT: 0.00 ms/l	SPE (XAD-2) with methanol	[80]
		+ HPLC		TPT: 0.009 mg/l		

Table 2. Continued

60

Sulfonylurea quaternary ammonium s-triazine Phenylurea acetamide	Tribenuron, chlorsulfuron, metsulfuron paraquat simazine, atrazine, terbuthylazine linuron metolachlor, alachlor, trifluralin	MEKC	30 mM borate, pH 8.0, 30 mM SDS	UV, λ =214 nm	Distilled water	[81]
Organonitrogen	Metribuzin, bromacil, terbacil, hexazinone, DEET, triadimefon	MEKC	12.5 mM borate, pH 9, 50 mM SDS	UV, λ =210 nm DL: 0.8 ng/l (without DEET)	Drainage ditch water near a highway after rainfall, (a) off-columm-SPE: with acetonitrile (b) on-column-FAC: with 1.2 mM borate, 5 mM SDS (10-fold diluted buffer)	[82] F. Ma
Phenoxy acid	Mecoprop, fenoprop, dichlorprop, flamprop, haloxyfop, fluazifop, diclofop, fenoxaprop	CZE	75 mM Britton–Robinson buffer (boric, acetic, phosphoric acid), pH 5, 6 mM vancomycin	UV, λ =190–210 nm DL per enantiomer: $5 \cdot 10^{-7} M$	Soil and Gallant, 72 h incubation at room temperature, extraction with methylene chloride	^[83]
Bonzothiadiazin, organonitrogen, Chlorinated acid herbicides	Naproamide, flampropisopropyl bromacil, chlorbufam, imazapyr, flamprop acid, fluazifop acid, haloxyfop acid, ethofumesate	CZE	25 mM borate, pH 9, 20–80 mg/ml SBE- β -CD	UV, λ =205 nm	Commercial formulation Effix	[84] / J. (
Rotenticide	Sodium monofluoracetate	CZE (reversed-EOF)	5 mM phthalate, pH 4.61, 0.3 mM CTAB 5 mM 4-hydroxybenzoate, pH 9.49, 0.3 mM CTAB	Indirect UV, (a) $\lambda = 230 \text{ nm}$ (b) $\lambda = 249 \text{ nm}$ DL: 0.4 μ g/ml	Rotenticide bait	[85] [85]
Enopyranuronic acid	Blasticidin-S	CZE	67 mM phosphate, pH 7	UV, λ=265 nm DL: 0.2 μg/ml	Commercial formulated blasticidin-S	 [86] A 80
Phenylurea	Monuron, linuron, diuron, isoproturon, monolinuron	MEKC	4 m <i>M</i> borate, 12 m <i>M</i> phosphate, pH 7, 20 m <i>M</i> SDS	UV, λ =244 nm DL: diuron 0.02 ng/ml	Water,	^[87] (200
Carbamate, thicarbamate, dithiocarbamates	Methomyl, aldicarb, asulam, thiophanate-methyl, cabaryl, swep, formetanate, molinate, ethiofencarb, cycloate, thiram	MEKC	100 mM borate pH 8.2, 50 mM SDS, 10% methanol	UV, λ=230 nm DL: carbaryl and asulam: 1–38 ng/ml cycloate 158 ng/ml	Tap water, SPE with acetonitrile	00) 45–67 ^[88]
Benzothiadiazin, chlorinated acid herbicides, nitrophenol	Bentazon, dinoseb, chloramben, 4-nitrophenol, acifluorfen, pentachlorphenol, dicamba, picloram, dichlorprop, 2,4-D, 3,5 dichlorbenzoic acid, 2,4,5-TP, 2,4-DB acid	CZE	20 mM posphate, pH 2.9 or 6.4, 5 mM acetate in isopropanol- water (40:60), pH 10	 (a) UV, λ=230 nm; ESI-MS DL: 8-250 μg/l 	Drinking-water, sample stacking	[89]

^a DEET=N,N-Diethyl-3-methyl-benzamide; SBE=sulfobutyl ether; for other abbreviations see tables and text.

4.5. On-line sample stacking, field-amplified injection and concentration

FAI is done during electrokinetic injection, and FAC or sample stacking is possible after hydrodynamic injection [63]. In both cases a large volume of analyte is diluted in distilled water or in run buffer (about 1:10). FAI and sample stacking are based on the principle, that in diluted buffer or water the electric field is much stronger than in the buffer system. By applying high voltages (normal: anode \Rightarrow cathode; reversed: cathode \Rightarrow anode) the anionic analyte migrates up to the border between water (diluted buffer) and the separation buffer. When they reach this interface the ions slow down and concentrate in a sharp sample band. In reversedpolarity FAC the polarity is changed after concentration in the sample band [63]. In FAC the injection time can vary from 45 s [74] to 120 s [63] as a function of the column length.

5. Capillary electrophoresis separation methods used for the analysis of agrochemicals

From the various different CE techniques, CZE and MEKC were found in Tables 1 and 2 to have the most applications in environmental fields.

6. Detection modes

6.1. UV-visible and laser-induced fluorescence detection

Two "traditional" detection modes were used for analyzing pesticides by CE: UV-visible (direct and indirect modus) and LIF.

The use of LIF detection (after or without derivatization) could in some cases compensate for low sensitivity problems caused by the use of UV–visible detection [51].

Apart from the classical UV–visible detection, the following detection modes were used for the analysis of the agrochemicals presented in Tables 1 and 2:

- UV-visible: phenoxy acid [24,25,27-30,37,39, 41,42,44,45,47,48,51,57,63,66-68,73,78,83,84, 89], s-triazine [26,31,33-35,39,40,42,44,50,52, 55,62,63,70,78,79,81], carbamate [31,42,45,49, 63,78,88], organophosphorus [30,31,42,45,63, 65], organonitrogen [59,82,84], organochlorine [30], acetamide [30,42,70], pyrethroid [32], sulfonylurea [36,38,64,70-72,76-78,81], urea [37,39,44,45,49,63,87], quaternary ammonium [43,56], organotin [80], triorganotin [80], blasticidin-S [86].
- (2) Diode array detection (DAD): diquat and paraquat [61], triadimenol [46].
- (3) Indirect UV–visible: glyphosphate [50], quaternary ammonium salts [54], sodium monofluoracetate [60], quaternary ammonium salts [20], organotin compounds [59].
- (4) LIF: fluorescein-derivatized phenoxy acids [37,97], pyrethroid insecticides [63], derivatized dicamba, 2,4-D, chlorimuronethyl [41].

6.2. Electrospray mass spectrometry detection

Although GC-MS and LC-MS are already well established and practiced analytical systems for the structure identification of pesticides [101–106], up to now only a few research groups developed methods to analyze pesticides with CE-MS [50-55,89]. The limitations of low sensitivity and the buffer systems needed to be adapted to the MS detection. A higher volatility is needed in order to avoid losses in electrospray efficiency and ion source contamination [55]. New technology now also offers the possibility to use more usual buffers (phosphate, borate) at low molar concentrations. Advances in ion source technology, the use of compatible buffers and the decreasing costs of benchtop MS instruments will surely increase the applicability of CE-MS in the future [107]. For more detailed information about CE-MS and some biological, pharmaceutical and environmental applications one can refer to the review in Ref. [108].

That only few examples are found in MEKC or chiral CE methods coupled with MS detection [51] shows the need for method development in this field [109].

Fig. 3. Relative standard deviations (%) of a replicate (n=4) measurement of fenoprop (f) and mecoprop (m) in migration time (t), peak area from time scale electropherograms (A_t) with respective time corrected areas (A_t/t), and peak area from mobility scale converted electropherograms (A_u) with respective time corrected areas (A_u/t).

7. Quantitative analysis

Quantification is one of the key points when analyzing pesticides from real matrices. In most articles presented in Tables 1 and 2 the quantification was performed with the CE software tools derived from chromatographic techniques, by using external or internal standards (spiking), reproducibility assurance and standard curve calibrations on a time-scale basis.

CE has reached a point where the advances in instrumental technology allow a good reproducibility of migration times and peak signals from run-to-run and from day-to-day. In uncoated capillaries however, the electroosmotic flow (EOF) - hardly controllable and dependent on the capillary inner surface conditions - is the driving force and influences directly the migration times of the analytes (in both CZE and MEKC). Small changes in EOF can have big influences on the migration times of an analyte (as a function of column length and voltage). A direct implication is that the characterizing parameter for the identification of an analyte can thus not be the migration time but rather its effective mobility. For peak tracking (i.e., pesticides in real matrices) the comparison of the effective mobilities instead of migration times should be used systematically and for the qualitative comparison of complete electropherograms some strategies have been developed. These includes the definition of "quantity of charge" [110], the transformation of the electropherogram in the "1/time domain" [111] or in the "effective mobility scale" (μ_{eff} scale) [112–114]. Up to now these strategies are only applicable off-line and not with the chromatography-derived software currently on the market. The latter approach (μ_{eff} scaling) not only allows a good peak tracking but also quantitative implications as shown in Fig. 3; the reproducibility in the quantification parameters is increased with the time corrected areas (usual procedure) and even more when analyzing the peaks in the effective mobility scale. Modifications of the chromatographic derived CE software taking more account the electrophoretic processes prior to data analysis should be proposed in a near future [115].

8. Outlook – advanced techniques in the analysis of pesticides

CE is now generally accepted as an analytical tool in many research fields but still shows many limitations, especially because of its low sensitivity which may be contradictory at a first glance at the analysis of agrochemicals present in trace amounts from environmental matrices. CE only needs low amounts of sample (nanoliter range) and an increase in the sensitivity by improving the hardware seems to be reaching its limits. This shows the necessity in developing strategies in sample preparation, cleaning and concentration prior to CE analysis. Some recent trends are on-line methods allowing sample concentration and CE analysis in one step as with the sweeping techniques, LC–CE coupling, on-line SPE–CE and solid-phase microextraction (SPME) [115].

Another on-coming field is the development of non-aqueous separation methods of neutral and charged agrochemicals with many advantages when coupling CE to MS.

8.1. On-line preconcentration methods

8.1.1. On-line solid-phase extraction

The on-line preconcentration of triazine herbicides with packed material C_{18} ("interactive capillaries") was initially described by Cai and El Rassi in 1992 [97]. Commercially available "concentration capillaries" with packing material (C_8) at the injection end of the capillary were already proposed for the analysis of pharmaceuticals [116]. In Refs. [117,118], the "extractor tube" was proposed in polyethylene (in that example 5 mm×310 µm I.D. with C_{18} packing material).

In the environmental sector on-line SPE is promising as a rapid concentration/separation tool. The enhancement of the sensitivity by increasing the concentration by a factor of 7000 for the analysis of the cationic drug terbutaline with UV detection has been shown in Ref. [119]. Within this method, some matrix effects could be minimized (on-line clean-up) and the concentration limit of detection improved (on-line concentration). Even complex peptide mixtures derived by tryptic digestion of proteins (for example: bovine serum albumin, BSA) are analyzed successfully [120]. With an automatic on-line SPE-CE system s-triazines could be enriched 12-fold from fortified water samples, down to a concentration of 50 μ g/l [121] showing thus good potentialities in this combined technique.

8.1.2. Sample sweeping in electrokinetic chromatography

Sample sweeping is the extension to neutral

components of sample stacking techniques for charged analytes [122]. The detection sensitivity of both charged and neutral components can be significantly improved only by choosing adequate sweeping conditions [123]. The method allows a sample zone sharpening corresponding to up a 5000fold concentration of dilute analyte in MEKC. With only this on-column concentration technique, lake water spiked with fenoprop could be analyzed to enantiomer concentrations lower than 10 ppb [124].

8.1.3. Membrane-based sample preparation

Prior to CE separation membrane extraction/concentration was proposed [125]. In the supported liquid membrane (SLM) technique either the porous membrane is impregnated with a water-immiscible organic solvent or the membrane consists of a nonporous silicon rubber. The pH is an essential parameter, so that at the "donor-side" the pH must be adjusted to the value, where the analyte is uncharged and can be easily extracted into the membrane (liquid). At the "acceptor-side" a proper pH must be chosen for ionization of the analytes. They do not have to remigrate into the membrane. Separation is based on size-exclusion [125]. In the environmental sector preconcentration with SLMs has been applied for the analysis of phenoxy acids, sulfonylureas, triazines and other herbicides [125].

8.2. Non-aqueous capillary electrophoresis

MEKC was commonly used for the analyzing of pesticides (see Table 1). When coupling CE with electrospray MS the main disadvantage is the non-volatility of the surfactants. Thus the loss in electrospray efficiency and ion source contamination is the consequence [55].

In order to avoid these problems non-aqueous media can be used for the separation of less polar substances; for instance lipophilic peptides and therapeutic drugs were separated successfully with an acetate buffer used together with acetic acid in methanol [126] and sulfonylurea herbicides using acetate buffer and acetonitrile [36]. Combined off-line with conventional SPE technique, six *s*-triazines could be analyzed from natural waters down to sub-ppb levels with a good day-to-day precision [127]. The development of methods for the analyzing

of pesticides by non-aqueous CE (NACE)–electrospray ionization (ESI) MS should also be taken into consideration in environmental analysis.

9. Conclusions

This tabulated review article pointed out the high potential of CE in the analysis of pesticides and summarized the optimum conditions in buffer systems, pH, sample analyzed and preconcentration methods for various classes of pesticides. The sample preparation becomes a critical point when analyzing environmental samples (concentrations in trace amounts) with CE which is generally known not to be as sensitive as classical chromatographic methods. The actual developments go in the direction of online concentration/clean-up/separation including solid phase, sweeping techniques, membrane- and isotachophoresis-based extraction/concentration. For the separations a trend is given with non-aqueous buffer systems that are also applicable when using ESI-MS detection. After more than 10 years of development to routine analysis in many chemical and biochemical fields, CE still offers many possibility and challenges in the separation area of environmental chemistry.

References

- [1] C.Y. Wang, H.Y. Huang, K.L. Kuo, Y.Z. Hsieh, J. Chromatogr. A 802 (1998) 225.
- [2] J. Yang, H. Long, H. Liu, A. Huang, Y. Sun, J. Chromatogr. A 811 (1998) 274.
- [3] H. Kataoka, J. Chromatogr. B 717 (1998) 247.
- [4] J. Chapman, J. Hobbs, LC·GC 5 (1999) 266.
- [5] K.D. Altria, J. Chromatogr. A 856 (1999) 443.
- [6] Z. Deyl (Ed.), Advanced Chromatographic and Electromigration Methods in Biosciences, Journal of Chromatography Library, Vol. 60, Elsevier, Amsterdam, 1998.
- [7] Ph. Schmitt-Kopplin, T. Poiger, R. Simon, D. Freitag, A. Kettrup, A.W. Garrison, Anal. Chem. 69 (1997) 2559.
- [8] A. Padarauskas, V. Olšauskaite, V. Paliulionyte, J. Chromatogr. 829 (1998) 359.
- [9] A.R. Timerbaev, E. Dabek-Zlotorzynska, M.A. van den Hoop, Analyst 6 (1999) 811.
- [10] B. Michalke, P. Schramel, J. Chromatogr. A 834 (1999) 341.
- [11] J.W. Jorgenson, K.D. Lukacs, Anal. Chem. 53 (1981) 1298.
- [12] J.W. Jorgenson, K.D. Lukacs, Science 222 (1983) 266.
- [13] S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchija, T. Ando, Anal. Chem. 56 (1984) 111.

- [14] K. Sarmini, E. Kenndler, J. Chromatogr. A 792 (1997) 3.
- [15] S.J. Fanali, J. Chromatogr. A 792 (1997) 227.
- [16] G. Gübitz, M.G. Schmid, J. Chromatogr. A 792 (1997) 179.
- [17] R. Vespalec, P. Boček, Electrophoresis 18 (1997) 843.
- [18] W.C. Brumley, LC·GC 13 (1995) 556.
- [19] Z. El Rassi, Electrophoresis 18 (1997) 2465.
- [20] E. Dabek-Zlotorzynska, Electrophoresis 18 (1997) 2453.
- [21] A. Karcher, Z. El Rassi, Electrophoresis 20 (1999) 3280.
- [22] G.W. Sovocool, W.C. Brumley, J.R. Donnelly, Electrophoresis 20 (1999) 3297.
- [23] R. Clement, B. Burk (Eds.), Proceedings of the 2nd Biennial International Conference on Chemical Measurement and Monitoring of the Environment, 11–14 May 1998.
- [24] Y. Mechref, Z. El Rassi, J. Chromatogr. A 757 (1997) 263.
- [25] Z. El Rassi, J. Chromatogr. A 875 (2000) 207.
- [26] Ph. Schmitt, A.W. Garrison, D. Freitag, A. Kettrup, J. Chromatogr. A 723 (1996) 169.
- [27] A. Farran, C. Serra, M.J. Sepaniak, J. Chromatogr. A 835 (1999) 209.
- [28] K.V. Penmetsa, R.B. Leidy, D. Shea, J. Chromatogr. A 790 (1997) 225.
- [29] A.W. Garrison, Ph. Schmitt, A. Kettrup, J. Chromatogr. A 688 (1994) 317.
- [30] Ph. Schmitt, A.W. Garrison, D. Freitag, A. Kettrup, J. Chromatogr. A 792 (1997) 419.
- [31] H. Süsse, H. Müller, Fresenius J. Anal. Chem 352 (1995) 470.
- [32] A. Karcher, Z. El Rassi, Electrophoresis 18 (1997) 1173.
- [33] D. Freitag, Ph. Schmitt-Kopplin, R. Simon, A. Kaune, A. Kettrup, Electrophoresis 20 (1999) 1568.
- [34] R. Carabias-Martínez, E. Rodríguez-Gonzalo, J. Domínguez-Alvarez, J. Hernández-Méndez, Anal. Chem. 69 (1997) 4437.
- [35] R. Carabias-Martínez, E. Rodríguez-Gonzalo, J. Domínguez-Alvarez, J. Hernández-Méndez, Anal. Chem. 71 (1999) 2468.
- [36] W.H. Matchett, W. Winnik, W.C. Brumley, J. Cap. Electrophoresis 3 (1996) 199.
- [37] A. Farran, S. Ruiz, Int. J. Environ. Anal. Chem. 58 (1995) 121.
- [38] B.M. Berger, N.L. Wolfe, Fresenius J. Anal. Chem. 356 (1996) 508.
- [39] J.T. Smith, Z. El Rassi, Electrophoresis 15 (1994) 1248.
- [40] Ph. Schmitt, D. Freitag, Y. Sanlaville, J. Lintelmann, A. Kettrup, J. Chromatogr. A 709 (1995) 215.
- [41] Y. Mechref, Z. El Rassi, J. Chromatogr. A 724 (1996) 295.
- [42] J.T. Smith, W. Nashabeh, Z. El. Rassi, Anal. Chem. 66 (1994) 1119.
- [43] M.T. Galceran, M.C. Carneiro, L. Puignou, Chromatographia 39 (1994) 581.
- [44] A. Farran, S. Ruiz, Anal. Chim. Acta 317 (1995) 181.
- [45] J.T. Smith, J. Chromatogr. A 685 (1994) 131.
- [46] B.D. Williams, C. Trenerry, J. Cap. Electrophoresis 3 (1996) 223.
- [47] G.M. McLaughlin, A. Weston, K.D. Hauffe, J. Chromatogr. A 744 (1996) 123.
- [48] C. Spagone, C. D'Orazio, M. Rossi, D. Rotilio, J. High Resolut. Chromatogr. 19 (1996) 647.

- [49] U. Pyell, U. Bütehorn, J. Chromatogr. A 716 (1995) 81.
- [50] C.Y. Tsai, Y.R. Chen, G.R. Her, J. Chromatogr. A 813 (1998) 379.
- [51] K. Otsuka, C.J. Smith, J. Grainger, J.R. Barr, D.G. Patterson, N. Tanake Jr., S. Terabe, J. Chromatogr. A 817 (1998) 75.
- [52] W.M. Nelson, Q. Tang, K. Harrata, C.S. Lee, J. Chromatogr. A 749 (1996) 219.
- [53] M.W.F. Nielen, J. Chromatogr. A 712 (1995) 269.
- [54] D. Wycherley, M.E. Rose, K. Giles, T.M. Hutton, D.A. Rimmer, J. Chromatogr. A 734 (1996) 339.
- [55] L. Yang, A.K. Harrata, C.S. Lee, Anal. Chem. 69 (1997) 1820.
- [56] X. Song, W.E. Budde, J. Am. Soc. Mass Spectrom. 7 (1996) 981.
- [57] K.V. Penmetsa, R.B. Leidy, D. Shea, J. Chromatogr. A 745 (1996) 201.
- [58] M.T. Galceran, M.C. Carneiro, M. Diez, L. Puignou, J. Chromatogr. A 782 (1997) 289.
- [59] D.T. Kubilius, R.J. Bushway, J. Chromatogr. A 793 (1998) 349.
- [60] M. Jung, W.C. Brumley, J. Chromatogr. A 717 (1995) 299.
- [61] T. Perez-Luiz, C. Martinez-Lozano, A. Sanz, V. Tomas, Chromatographia 43 (1996) 468.
- [62] R. Loos, R. Niessner, J. Chromatogr. A 835 (1999) 217.
- [63] A. Farran, S. Ruiz, C. Serra, M. Aguilar, J. Chromatogr. A 737 (1996) 109.
- [64] A.J. Krynitsky, D.M. Swineford, J. AOAC Int. 78 (1995) 1091.
- [65] X. Guardino, J. Obiols, M.G. Rosell, A. Farran, C. Serra, J. Chromatogr. A 823 (1998) 91.
- [66] S. Nemoto, S.J. Lehotay, J. Agric. Food Chem. 46 (1998) 2190.
- [67] Y.Z. Hsieh, H.Y. Huang, J. Chromatogr. A 745 (1996) 217.
- [68] A.W. Garrison, Ph. Schmitt, D. Martens, A. Kettrup, Environ. Sci. Technol. 30 (1996) 2449.
- [69] K.V. Penmetsa, R.B. Leidy, D. Shea, Electrophoresis 18 (1997) 235.
- [70] G. Dinelli, A. Bonetti, P. Catzione, G.C. Galletti, J. Chromatogr. B 656 (1994) 275.
- [71] A.J. Krynitsky, J. AOAC Int. 80 (1997) 392.
- [72] G. Dinelli, A. Vicari, A. Bonetti, J. Chromatogr. A 700 (1995) 195.
- [73] F.M. Lancas, S.R. Rissato, M.S. Galhiane, Chromatographia 50 (1999) 35.
- [74] M.G. Cikalo, D.M. Goodall, W. Matthews, J. Chromatogr. A 745 (1996) 189.
- [75] K.S. Whang, C.W. Whang, Electrophoresis 18 (1997) 241.
- [76] G. Dinelli, A. Vicari, V. Brandolini, J. Chromatogr. A 700 (1995) 201.
- [77] K.V. Penmetsa, R.B. Leidy, B. Ross, D. Shea, J. Chromatogr. A 766 (1997) 225.
- [78] H. Süsse, H. Müller, J. Chromatogr. A 730 (1996) 337.
- [79] R. Carabias Martínez, E.R. Gonzalo, A.I.M. Domínguez, J.D. Alvarez, J.H. Méndez, J. Chromatogr. A 733 (1996) 349.
- [80] E. Pobozy, B. Glod, J. Kaniewska, M. Trojanowicz, J. Chromatogr. A 718 (1995) 329.

- [81] G. Dinelli, A. Vicari, P. Catizone, J. Chromatogr. A 733 (1996) 340.
- [82] Y. He, H.K. Lee, Electrophoresis 18 (1997) 2036.
- [83] C. Desiderio, C.M. Polcaro, P. Padiglioni, S. Fanali, J. Chromatogr. A 781 (1997) 503.
- [84] C. Desiderio, C.M. Polcaro, S. Fanali, Electrophoresis 18 (1997) 227.
- [85] F. Guan, H. Wu, Y. Luo, J. Chromatogr. A 719 (1996) 421.
- [86] C.C. Lo, Y.J. Lee, C.J. Chang, J. Agric. Food Chem. 43 (1995) 2892.
- [87] M.B. Barroso, L.N. Konda, G. Morovojan, J. High Resolut. Chromatogr. 22 (1999) 171.
- [88] M. Rossi, D. Rotilio, J. High Resolut. Chromatogr. 20 (1997) 265.
- [89] X. Song, W.L. Budde, J. Chromatogr. A 829 (1998) 327.
- [90] K.D. Altria, J. Chromatogr. A 844 (1999) 371.
- [91] Y.J. Heo, K.J.J. Lee, J. Pharm. Biomed. Anal. 17 (1998) 1371.
- [92] P.G. Pietta, M.F. Mangano, C. Battaglia, G. Salani, L.R. Bernardi, G. De Bellis, J. Chromatogr. A 853 (1999) 355.
- [93] D.L. Lewis, A.W. Garrison, K.E. Wommack, A. Whittermore, P. Steudler, J. Meillio, Nature 401 (1999) 898.
- [94] V. Pacakova, K. Stulik, J. Jiskra, J. Chromatogr. A 754 (1996) 17.
- [95] R.E. Majors, LC·GC 9 (1998) 8.
- [96] B. Bjarnason, L. Chimnka, O. Ramström, Anal. Chem. 71 (1999) 2152.
- [97] J. Cai, Z. El Rassi, J. Liq. Chromatogr. 15 (1992) 1179.
- [98] M.C. Hennion, J. Chromatogr. A 856 (1999) 3.
- [99] B. Benthin, H. Danz, M. Hamburger, J. Chromatogr. A 837 (1999) 211.
- [100] S.J. Lehotay, C.H. Lee, J. Chromatogr. 785 (1997) 313.
- [101] C. Sánchez-Brunete, R.A. Pérez, E. Miguel, J.L. Tadeo, J. Chromatogr. A 823 (1998) 17.
- [102] C. Sánchez-Brunete, L. Martínez, J.L. Tadeo, J. Agric. Food Chem. 42 (1994) 2210.
- [103] A. Lagana, G. Fago, A. Marino, Anal. Chem. 70 (1998) 121.
- [104] R.A. Pérez, C. Sánchez-Brunete, E. Miguel, J.L. Tadeo, J. Agric. Food Chem. 46 (1998) 1864.
- [105] Y. Nakamura, Y. Tonogai, Y. Sekiguchi, Y. Tsumura, N. Nishida, K. Takakura, M. Isechi, K. Yuasa, M. Nakamura, N. Kifune, K. Yamamoto, S. Terasawa, T. Oshima, M. Miyata, K. Kamakura, Y. Itoj, Agric. Food. Chem. 42 (1994) 2508.
- [106] M.R. Lee, Y.C. Yeh, W.S. Hsiang, B.H. Hwang, J. Chromatogr. A 806 (1998) 317.
- [107] F.J. Banks, Electrophoresis 18 (1997) 2255.
- [108] J. Cai, J. Henion, J. Chromatogr. A 703 (1995) 667.
- [109] L. Yang, C.S. Lee, J. Chromatogr. A 780 (1997) 207.
- [110] T. Iwata, J. Koshoubu, Y. Korosu, J. Chromatogr. A 810 (1998) 183.
- [111] M. Mammen, I.J. Colton, J.D. Carbeck, R. Bradley, G.M. Whitesides, Anal. Chem. 69 (1997) 2165.
- [112] Ph. Schmitt-Kopplin, A.V. Garmash, A.V. Kudryavtsev, I. Perminova, N. Hertkorn, D. Freitag, A. Kettrup, J. AOAC Int. 82 (1999) 1594.

- [113] Ph. Schmitt-Kopplin, K. Fischer, D. Freitag, A. Kettrup, J. Chromatogr. A 807 (1998) 89.
- [114] Ph. Schmitt-Kopplin, A.V. Garmash, A.V. Kudryavtsev, I. Perminova, N. Hertkorn, D. Freitag, A. Kettrup, Electrophoresis (1999) submitted for publication.
- [115] D. Martinez, F. Borrull, M. Calull, Trends Anal. Chem. 18 (1999) 282.
- [116] M.E. Swartz, M. Merion, J. Chromatogr. 632 (1993) 209.
- [117] M.A. Strausbach, S.J. Xu, J.E. Ferguson, M.E. Nunez, D. Machacek, G.M. Lawson, P.J. Wettstein, J.P. Landers, J. Chromatogr. A 717 (1995) 279.
- [118] C.B. Knudsen, J.H. Beatti, J. Chromatogr. A 792 (1997) 463.
- [119] M. Petersson, K.G. Wahlund, S. Nilsson, J. Chromatogr. A 841 (1999) 249.

- [120] D. Figeys, A. Ducret, R. Aebersold, J. Chromatogr. A 763 (1997) 295.
- [121] P. Hinsmann, L. Arce, A. Rios, M. Valcarcel, J. Chromatogr. A 866 (2000) 137.
- [122] J.P. Quirino, S. Terabe, K. Otsuka, J.B. Vincent, G. Vigh, J. Chromatogr. A 838 (1999) 3.
- [123] J.P. Quirino, S. Terabe, Anal. Chem 71 (1999) 1638.
- [124] J.P. Quirino, S. Terabe, Science 282 (1998) 465.
- [125] N.C. van de Merbel, J. Chromatogr. A 856 (1999) 55.
- [126] Q. Yang, L.M. Benson, K.L. Johnson, S. Naylor, J. Biochem. Biophys. Methods 38 (1999) 103.
- [127] R. Carabias-Martinez, E. Rodrigez-Gonzalo, J. Dominguez-Alvarez, J. Hernandez-Mendez, J. Chromatogr. A 869 (2000) 451.